Quantum Chromodynamics

Lecture 2: Leading order and showers
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Tasks for today
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&

* Discuss a recipe for QCD predictions
» Leading Order (LO) Monte Carlo.

» Understand the importance of soft and collinear kinematic limits.

* ... In both matrix elements and phase space.
* Understand how properties of these limits can be used to

extend LO predictions.

 evolution equations and parton showers.
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Recipe for QCD cross sections

1.ldentify the final state of interest, e.g. leptons, photons, quarks, gluons.
2.Draw the relevant Feynman diagrams and begin calculating.

* take care of QCD color factors using color algebra.

e compute the rest of the diagram using spinors, Gamma matrices, etc.

3.This gives us the squared matrix elements.

4.To turn this into a cross section, we need to integrate over momentum degrees
of freedom — phase space integration.

e for final state momenta, this is just like QED.

* in the initial state, we have the additional complication that we are colliding
protons and not quarks/gluons (more on this later).

* this step almost always performed numerically - “Monte Carlo integration”.
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ldentifying the final state

* From the beginning, we noted that all particles observed in experiments
should be color neutral — no quarks or gluons.

* How then can we mesh experimental observations with the QCD Lagrangian,
which necessarily involves the fundamental quark and gluon fields?

A scattering can be described in terms of energetic quarks and gluons
(partons) that subsequently hadronize, combining into color-neutral mesons
and baryons, without too much loss of energy.

* This concept is often referred to as local parton-hadron duality.
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energetic partons hadronization jets

 This naturally accommodates the replacement of jets of particles in the final
state by an equivalent number of quarks or gluons.
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Leading order tools

* The leading order estimate of the cross section is obtained by computing all
relevant tree-level Feynman diagrams (i.e. no internal loops).

* Nowadays this is practically a solved problem - many suitable tools available.

M. L. Mangano et al.

ALPGEN
http://alpgen.web.cern.ch/alpgen/
F. Krauss et al.
AMEGIC++ | N
http://projects.hepforge.org/sherpa/dokuwiki/doku.php
E. Boos et al.
CompHEP |
http://comphep.sinp.msu.ru/
C. Papadopoulos, M. Worek
HELAC
http://helac-phegas.web.cern.ch/helac-phegas/helac-phegas.html
F. Maltoni, T. Stelzer
Madevent

http://madgraph.roma2.infn.it/
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& Madgraph

UCL UTUC Fermi
by the MG/ME Development team T e
Generate My Cluster Downloads

Process Register Tools Database Status  (needs registration) Wiki/Docs  Admin

Generate Code On-Line

To improve our web services we now request that you register. Registration is quick and free. You may register for a password by clicking here

Code can be generated either by:

L. Fill the form:

MadGraph Version : | MadGraph 4 +) What is MadGraph 57
Model: SM + | Model descriptions
Input Process: Examples/format

Max QCD Order: 33
Max QED Order: T

p and j definitions: | p=j=d uscd~u~s~c~g ¢
SUIM OVET IE:]’_'I'[CI-HS: I+ = e+, mu+ ; |- = e-, mu-; vl = ve, vm ; vl~ = ve~, vm-~ :)
( Submit )
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Limiting factors

» Solved problem in principle, but computing power is still an issue.

* This is mostly because the number of Feynman diagrams entering the
amplitude calculation grows factorially with the number of external particles.

* hence smart (recursive) methods
to generate matrix elements.

8,000

@ Simple color treatment
€@ Smarter color handling

 Demonstrated by the time taken

to generate 10,000 events @ 0000
: : . N O
involving 2 gluons in the initial IS

state and up to 10 in the final state. 4.000

* The lower curve shows a

smarter treatment of color 2000
factors, which become a limiting
factor too.
0
* active research area. 2 3 4 5 6 7 8 9 10

no. of gluons in final state

(adapted from C. Duhr et al., 2000)
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Beyond fixed order

Ten gluons in the final state is a lot - but doesn’t come close to the typical
particle multiplicity in a usual event.

Moreover, we want a tool that says something about hadrons, not partons.

How can we hope to build something like this from scratch, using QCD?

Answer: yes! - due to a particular universal behaviour of QCD cross sections.

To demonstrate this, we start
with a short detour into some
Higgs physics.

Shown here are cross sections
for different Higgs production
modes at the (14 TeV) LHC.

Here we are interested in the
mode with the largest cross
section: gluon fusion.

o [fb]

05 SM Higgs production B
LHC
10*
) ~..dq — Wh
N
10° i

gb — gth e —
TeWV4LHC Higgs working group — -

100 200 300

m, [GeV]
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Higgs coupling to gluons

« How does this coupling take place? OO0 |
Certainly not directly! toD Higgs
* The answer is through a loop, with the [auark

Higgs coupling preferentially to the D000
neaviest quark available: the top quark.

* |[n general, loop-induced processes are suppressed compared to tree-level
contributions - but at the LHC, gluons will be plentiful (esp. compared to
antiquarks - more on that later).

* We're not going to perform this computation here, but note that in the limit that
the top mass is infinite the result is formally equivalent to the coupling obtained
by adding a term to the Lagrangian:

C “Effective Theory”

_ A ppv
£99H 9 H F/U/FA gives rise to ggH
/ T \ coupling and new
Qg Higas same field Feynman rules.
¢ = 6rv ﬂ|ge;|% strength as before
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Feynman rules: effective theory

 Also get 3- and 4-point vertices that mimic the structure of the pure QCD case.

B,
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Effective theory

 This effective theory is a good approximation.

gg - H at the LHC, Vs = 7 TeV
B A L
\.  corrections < 20% | effective theory approach
-\ fails to catch any features
of the threshold region
full theory | around 2mt
effective th. _

o [pb]

my [GeV]

* Moreover it is very useful for more complicated calculations

» chain new vertices together in order to compute cross sections that would
be intractable in the full (finite top mass) theory.

* e.g. producing additional quarks or gluons (i.e. jets).
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Matrix elements

 First look at the squared matrix elements for this process.

D2
_____ H Mgyl = 2(N2 —1)C?*mY,

P1

« Now consider adding a gluon (total of 4 diagrams - remember triple-gluon+H).

P2 P3
‘MHgggyz — 4Nc(Nc2 - 1)0293 X
_____ ’ (m% + (2p1-p2)* + (2p1.p3)* + (2p2-p3)4>

8p1.P2 P1.P3 P2.P3

P1

* Inspect this in the limit that gluons 2 and 3 are collinear:
po=2z2P, p3=(1—2)P
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Collinear limit: gluons

« Under this transformation we can make the replacements:

2p1.p2 — zmi; , 2p1ps — (L—z2)m3, 2paps — 0,

and simply read off the answer:

‘MHggg‘Q e 4Nc(Nc2 - 1)0295777’%1 (

1—|—z4—|—(1—z)4>
22(1 — 2)p2.p3

* This clearly shares some features with the ggH matrix element squared we
just calculated, which we can exploit to write it in a new way.

coll. 29?
‘-/\/llLIquLq‘2 ’ 20013 ‘MHggPng(Z)

where the collinear splitting function, which only depends on the relative
weight in the splitting (z), is defined by:

G
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Collinear limit: quarks

« Same trick with the two collinear gluons replaced by quark-antiquark pair.

P2 P3
’Mchjq‘Q — 4TR(N3 - 1)0293
_____ ’ X <(2p1-p2)2 + (2p1-p3)2>
2p2.p3

P1

* We find a similar result. In the collinear limit, the matrix element squared is
again proportional to the matrix element with one less parton:

COll. 22
Mg < =9

> Muoal? P,z
2 Mgy Py ()

The splitting function this time is given by:

Pyy(z) =Tr (Zz + (1 - 2)2)
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Collinear limit: quark-gluon

* To investigate this last case, we need slightly less exotic matrix elements.

P2
Q p3
virtual photon
P1

(Q%>0)

Myegqql® = 8NCCF€?19§ X
((21?1-]?3)2 + (2p2.p3)? + 2Q2(2p1-p2)>
4 p1.p3 P2.p3

2 22
‘M,y*qq‘ — 4N66qQ

* A similar analysis, with the gluon carrying momentum fraction (7-z), leads to

the result: ,
1+ 2z
P =
2q(%) F ( 1 _ . )
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=M Universal factorization

* The important feature of these results is that they are universal, i.e. they apply
to the appropriate collinear limits in all processes involving QCD radiation.

* They are a feature of the QCD interactions themselves.

C
a, c coll. 2 ? 7'Z
Mae [P 55" 2 | My PPa(z) D
Pa-Pc
/v Z
collinear singularity a
1+ 22 additional soft
Pyq(2) = Cr ( 1_ . ) /singularity as z—1
2 1 — )2 2(1 _ \2
Pyy(z) = 2N, (=2 202 2)
2(1 — 2) ~Z
qu(z) — Th (22 4 (1 B 2)2) Soft forz—>0, z—1
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Infrared singularities

* These are called infrared singularities, which occur when relevant momenta
become small.

 they are thus indicative of long-range phenomena which are, by definition,
not well described by perturbation theory.

 at such scales are approached, hadronization takes over and apparent
singularities are avoided.

* In perturbative QCD we must avoid such issues by restricting our attention to
iInfrared safe quantities that are insensitive to such regions.

 for example: in our leading order calculations, we try to describe jets with
large transverse momenta, not arbitrarily soft particles.

« we shall see later on that it is sometimes useful to regularize such
singularities: they can appear in intermediate steps of a calculation, but
must disappear at the end (for physical observables).

* this is a statement of the Kinoshita-Lee-Nauenberg (KLN) theorem.
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= The silver lining

* On the positive side:

* we have learned that emission of soft and collinear partons is favoured;

« we know exactly the form of the required matrix elements when that occurs.
 |n fact it's even better than this - it applies to the phase space too.

« Start from the standard phase space formula:

d° i D

d’pa d’pe
(2m)32F, (2m)32E.

dPS(“_)aC = ( : )

and note that, if we fix the momentum of a, we can relate these by:

35 1 ELE
P Ly dPS(. v -

dE, 0,d0,
(27)32E, E. (2m)? 2E,

(for 0a ~ O)

dPS(...)ac — dPS()b
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=21 Small angle approximation

« “Small angle” kinematics of the collinear limit:

Pa = 2Pb sPe = (1 — 2)ps
— b, =zE, , E. = (1 —Z)Eb

20, —(1—2)0,=0 — 0,=(1—2)(0,+86.)

* Introduce new variable t to describe virtuality of b, related to opening angle:
2E262
1 —=z

t = (pg +pe)® = 2E,E.(1 —cos(, + 0.)) = Efz(1 — 2)(0, + 0.)* =

« Hence we can write the factorized form in this limit as,
1 EaEb (1 — Z)Eb dz dt
dzdt = dPS; e
(27)2 2B, 2:E2 (--)ae J62

dPS(...)ac — dPS()b

« Combining this with our previous matrix element factorization formula gives:

dt
t

s
do(. yac = M. )ac2dPS(. yae = do(. yp <2W) Pap(z) dz
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Parton showers

s\ dt
- ) P.p(2) dz

do., :dn(
Tt 7 2w/ 1

« This is an important equation: it tells us how we can generate additional soft
and collinear radiation ad infinitum.

* Technically this is called timelike branching since we have implicitly assumed
that all particles are outgoing (£>0).

 extension to the spacelike case (radiation on an incoming line) is similar.

* This is the principle upon which all parton shower simulations are based.
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Popular parton shower programs

1. Sjostrand et al.

PYTHIA . .
http://home.thep.lu.se/~torbjorn/Pythia.html
G. Corcella et al.

HERWIG |
http://hepwww.rl.ac.uk/theory/seymour/herwig/

_ S. Gieseke et al.

HERWIG++ | |

http://projects.hepforge.org/herwig/
F. Krauss et al.

SHERPA | .
http://projects.hepforge.org/sherpa/dokuwiki/doku.php

_ H. Baer et al.
ISAJET

http://www.nhn.ou.edu/~isajet/
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Inside a parton shower

* The defining equation can be interpreted in terms of the probability of having a
parton branching with given (x,t) at some point in the shower: let's call it f(x,1).

« For simplicity, let's assume that the evolution doesn’t change the parton
species, e.g. an all-gluon shower (extension is straightforward).

* Now consider a small change from t to t+t and its effect on f(x,1).

y > {{{{i 0f+(@,t) = % /: dy dz (5) Pag(2)F (y,)(w — 29)

00000 z =
) Pag(2)(/2,1)

+ve effect from
higher momenta
splitting

7 ){{{{i O0f _(z,t) = %f(az,t) /090 dy dz (;—;) P,,(2)0(y — zx)

00000 z =

0t ! )
-ve effect from = — f(z, t)/ dz (—S) P, (2)
splitting into y<t t 0 2m/) %

smaller momenta Quantum Chromodynamics - John Campbell - 22
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¥ The DGLAP equation

« By taking the difference can reinterpret this as a differential equation for f(x,{):

S o) (1 o)

* This is called the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation.

* |t is most convenient to expose a solution to this equation by introducing a
Sudakov form factor, A(t).

£) = exp {—/ dt//dz P., )}

« Hence we can rewrite as:

A(t) ot
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The Sudakov form factor

* Integrate up to find solution given boundary condition at t=to:

Ldt' A dz /o
) = AOf@to) + [ Gas [F(52) Pl (/0
no branching \
between to and t

iIntegrate over multiple branchings; for each
value of t, no branching between t’ and t

* Interpret Sudakov form factor as the probability for no parton emission

* better: no resolvable parton emission. We must cut off the z-integration as
z—1 to avoid the singularities we found before. Above cutoff unresolvable.

* The Sudakov interpretation lends itself to Monte Carlo methods

(universally used in parton showers): R
t

* pick a random number rin [0,1] and determinate f> from t; from AE;; =r
1

» can generate z according to integral over correct Pap for splitting.
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« Eventually the evolution will bring us to a very small scale of t at which we no
longer believe in the perturbation theory (say ~ 1 GeV). Beyond that point we
no longer perform any branching.

 All partons produced in this shower are showered further, until same condition.

* Once this point is reached, no
more perturbative evolution
possible.

« Partons should be interpreted
as hadrons according to a

artonic . .
P hadronization model.

matrix element

NOILVZINOdJddVH

« examples: string model,
cluster model.

* Most importantly: these are all phenomenological models.

* They require inputs that cannot be predicted from the QCD Lagrangian ab
initio and must therefore be tuned by comparison with data (mostly LEP).
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Events/0.5 GeV/c

What did we win?

A parton shower allows us to (attempt to) describe features of the whole event:
the output is high multiplicity final states containing hadrons.

« \ery flexible framework. In principle, start with any hard scattering (e.g. any
theorist’s latest and greatest model) and the PS takes care of QCD radiation.

* |In contrast to a pure leading
PYTHIA order prediction, a parton
shower can be matched to

CDF DATA data even at low pr.

Z

g

90200 30 30 _ 50 a0 3, ° Thisistrue in general:
e*e” pair P; (GeV/c) broader region of applicability.
/ boson transverse momentum
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= \Warnings

« By construction, a parton shower is correct only for successive branchings that
are collinear or soft (formally called leading log).

- Should therefore take care 10°F R
when describing final states | . . .
: : : - 10} ALPGEN (Z—vVv)+4 :
In which there is either > | 1] | il improved
. . . %, - background
manifestly multiple hard g J [* L SUSY .
L . . S 0E | o] *9 , - calculation
radiation, or its effects might  § | - *® signal
be important. & " /
= ¢ &
'f; L PS = - ﬁ*
« example: simulation of 5ol | (kg T W te Mest = i [prepyl + Er
background to a SUSY - | Pythia ** I
search in the ATLAS TDR. L [LBNL-55641 T/, s
0 1000 2000 3000 4000

M,y (GaV)

 Also: full higher-order corrections are not included (more on this later).

« Uncertainty can only be estimated by comparison with data and/or between
different parton shower implementations.

 the gory details of each shower are often quite different.
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* There are many tools capable of producing leading order cross section
predictions from scratch.

* They are limited only by computer power: as a result, cannot generate more
than 10 particles in the final state (program/process specific).

* The factorization of both QCD matrix elements and phase space, in the soft
and collinear limits, allows us to generate arbitrarily many such branchings.

» factorization of matrix elements: universal Altarelli-Parisi splitting functions
* factorization of phase space: small angle approximation.

« Such a formalism leads to a DGLAP evolution equation for the probability of
finding a given parton within the branching process.

* Introducing a Sudakov form factor leads to an interpretation which is easy to
implement as a parton shower (e.g. Pythia, Herwig, Sherpa).

» can describe exclusive final states (hadrons), even down to small scales;

* in regions of hard radiation the soft/collinear approx. may not be sufficient.
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